7 research outputs found

    Emergent requirements for supporting introductory programming

    Get PDF
    The problems associated with learning and teaching first year University Computer Science (CS1) programming classes are summarized showing that various support tools and techniques have been developed and evaluated. From this review of applicable support the paper derives ten requirements that a support tool should have in order to improve CS1 student success rate with respect to learning and understanding

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    SNOOPIE : development of a learning support tool for novice programmers within a conceptual framework

    Get PDF
    Learning to program is recognised nationally and internationally as a complex task that novices find challenging. There exist many endeavours to support the novice in this activity, including software tools that aim to provide a more supportive environment than that provided by standard software facilities, together with schemes that reduce the underlying complexity of programming by providing accessible micro-worlds in which students develop program code. Existing literature recognises that learning to program is difficult because of the need to learn the rules and operation of the language (program formulation), and the concurrent need to interpret problems and recognise the required components for that problem (problem formulation). This thesis describes a new form of learning support that addresses that dual task of program and problem formulation. A review of existing teaching tools that support the novice programmer leads to a set of requirements for a support tool that encompasses the processes of both program and problem formulation. This set of requirements is encapsulated in a conceptual framework for software tool development. The framework demonstrates how the requirements of a support tool can be met by performing a series of automated analyses at different stages in the student's development of a solution. An extended series of observations demonstrates the multi-faceted nature of problems that students encounter whilst they are learning to program and how these problems can be mapped onto the different levels of programs and problem formulation. These observations and the framework were used to inform the development of SNOOPIE, a sample instantiation of the framework for learning Java programming. This software tool has been fully evaluated and demonstrated to have a significant impact on the learning process for novice Java programmers. SNOOPIE is fully integrated into a current introductory programming module and a future programme of work is being established that will see SNOOPIE integrated with other established software tools

    Requirements for educational support tools in Virtual Worlds

    Get PDF
    Paper number 65Virtual Worlds have been used for online gaming, socialising, business advertising and education. As the educational uses become more sophisticated from early information advertising and teaching resources to simulated laboratory and scenarios, it is necessary to determine requirements for tools and virtual systems to achieve the optimal support possible. This paper discusses the current educational uses of Virtual Worlds and applies this to a set of support requirements derived for an evaluated support tool for learning to program. The result is a layered approach, or checklist, to support learning and evaluation for effective and adaptive online educational support tools including virtual world educational systems.Postprin

    SNOOPIE : development of a learning support tool for novice programmers within a conceptual framework

    No full text
    Learning to program is recognised nationally and internationally as a complex task that novices find challenging. There exist many endeavours to support the novice in this activity, including software tools that aim to provide a more supportive environment than that provided by standard software facilities, together with schemes that reduce the underlying complexity of programming by providing accessible micro-worlds in which students develop program code. Existing literature recognises that learning to program is difficult because of the need to learn the rules and operation of the language (program formulation), and the concurrent need to interpret problems and recognise the required components for that problem (problem formulation). This thesis describes a new form of learning support that addresses that dual task of program and problem formulation. A review of existing teaching tools that support the novice programmer leads to a set of requirements for a support tool that encompasses the processes of both program and problem formulation. This set of requirements is encapsulated in a conceptual framework for software tool development. The framework demonstrates how the requirements of a support tool can be met by performing a series of automated analyses at different stages in the student's development of a solution. An extended series of observations demonstrates the multi-faceted nature of problems that students encounter whilst they are learning to program and how these problems can be mapped onto the different levels of programs and problem formulation. These observations and the framework were used to inform the development of SNOOPIE, a sample instantiation of the framework for learning Java programming. This software tool has been fully evaluated and demonstrated to have a significant impact on the learning process for novice Java programmers. SNOOPIE is fully integrated into a current introductory programming module and a future programme of work is being established that will see SNOOPIE integrated with other established software tools.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore